# If y =sin (sin (sin x )),then dy /dx =?

*print*Print*list*Cite

### 1 Answer

`y=sin(sin(sinx))`

To solve for dy/dx, apply chain rule.

So, take the derivative of the outermost function first.

`(dy)/(dx)= [sin(sin(sinx))]'`

`(dy)/(dx)=cos (sin(sinx))*[sin(sinx)]'`

`(dy)/(dx)=cos (sin(sinx))*cos(sinx)*[sinx]'`

`(dy)/(dx)=cos (sin(sinx))*cos(sinx)*cosx*[x]'`

`(dy)/(dx)=cos (sin(sinx))*cos(sinx)*cosx*1`

`(dy)/(dx)=cos (sin(sinx))*cos(sinx)*cosx`

**Hence, `(dy)/(dx)=cosx*cos(sinx)*cos(sin(sinx))` .**