# `y = sin(cot(x))` Write the composite function in the form f(g(x)). Identify the inner function u = g(x) and the outer function y =f(u). Then find the derivative dy/

*print*Print*list*Cite

### 2 Answers

**Note:- 1) If y = sinx ; then dy/dx = cosx**

**2) If y = cotx ; then dy/dx = -cosec(^2)x**

Now,

y = sin(cotx)

Let g(x) = cotx..............(inner function)

and f(x) = sinx ...........(outer function)

Thus, f(g(x)) = sin(cotx)...................answer

Now, y = sin(cotx)

thus, dy/dx = y' = cos(cotx)*[-cosec^(2)x]

or, dy/dx = y' = -[cosec^(2)x]*[cos(cotx)]

### User Comments

The given function is `y=sin(cotx)`

This is in the form `y=f(g(x))`

`f(x)=sinx and g(x)=cotx`

`dy/dx=cos(cotx).(-cosec^2x)`

`=-cos(cotx)cosec^2x`