Given: `y=(sec(x))^7/7-(sec(x))^5/5`

`y'=(7sec(x)^6)/7sec(x)tan(x)-(5sec(x)^4)/5sec(x)tan(x)`

`y'=(sec(x))^7tan(x)-(sec(x))^5tan(x)`

`y'=(sec(x))^5tan(x)[(sec(x))^2-1]`

`y'=(sec(x))^5tan(x)(tan(x))^2`

`y'=(sec(x))^5(tan(x))^3`

``

``

Given: `y=(sec(x))^7/7-(sec(x))^5/5`

`y'=(7sec(x)^6)/7sec(x)tan(x)-(5sec(x)^4)/5sec(x)tan(x)`

`y'=(sec(x))^7tan(x)-(sec(x))^5tan(x)`

`y'=(sec(x))^5tan(x)[(sec(x))^2-1]`

`y'=(sec(x))^5tan(x)(tan(x))^2`

`y'=(sec(x))^5(tan(x))^3`

``

``