`y=lnx , [1,5]` Find the arc length of the curve over the given interval.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 Arc length of curve can be denoted as "`S` ". We can determine it by using integral formula on a closed interval [a,b] as: `S = int_a^b ds`


`ds = sqrt(1+ ((dy)/(dx))^2 )dx`  ` if y=f(x)`


`ds = sqrt(1+((dx)/(dy))^2) dy if x=h(y)`

`a` = lower boundary of the closed interval

`b` =upper boundary of the closed interval


From the given problem: `y =ln(x), [1,5]` , we determine that the boundary values are:

`a= 1` and `b=5`

Note that `y= ln(x)` follows `y=f(x)` then the formula we will follow can be expressed as `S =int_a^bsqrt(1+ ((dy)/(dx))^2 )dx`

For the derivative of ` y` or `(dy)/(dx)` , we apply the derivative formula for logarithm:

`d/(dx)y= d/(dx) ln(x)`

`(dy)/(dx)= 1/x`

 Then` ((dy)/(dx))^2= (1/x)^2`  or `1/x^2` .

Plug-in the values  on integral formula for arc length of a curve, we get:

`S =int_1^5sqrt(1+1/x^2 )dx`

Let `1 = x^2/x^2` then we get:

`S=int_1^5sqrt(x^2/x+1/x^2 )dx`

    `=int_1^5sqrt((x^2+1)/x^2 )dx`

    `=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx`

    `=int_1^5sqrt(x^2+1)/sqrt(x^2 )dx`


From the integration table,  we follow the formula for rational function with roots:

`int sqrt(x^2+a^2)/x dx = sqrt(x^2+a^2)-a*ln|(a+sqrt(x^2+a^2))/x|` .

Applying the integral formula with a^2=1 then a=1, we get:

`int_1^5sqrt(x^2+1)/xdx = [sqrt(x^2+1)-1*ln|(1+sqrt(x^2+1))/x|]|_1^5`

                     `= [sqrt(x^2+1)-ln|(1+sqrt(x^2+1))/x|]|_1^5`

Apply the definite integral formula: `F(x)|_a^b= F(b)-F(a)` .





`=sqrt(26)-ln|(1+sqrt(26))/5| -sqrt(2)+ln|1+sqrt(2)|`

Apply logarithm property: `ln(x)-ln(y) = ln(x/y)` .

`S =sqrt(26)-sqrt(2)+ln|1+sqrt(2)|-ln|(1+sqrt(26))/5|`

`S =sqrt(26)-sqrt(2)+ln|(1+sqrt(2))/(((1+sqrt(26))/5))|`

`S =sqrt(26)-sqrt(2)+ln|(5*(1+sqrt(2)))/(1+sqrt(26))|`

`S =sqrt(26)-sqrt(2)+ln|(5+5sqrt(2))/(1+sqrt(26))|` 


See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team