`y = ln(tanh(x/2))` Find the derivative of the function

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`y=ln(tanh(x/2))`

The derivative formula of natural logarithm is

  • `d/dx[ln(u)] = 1/u*(du)/dx`

Applying this formula, the derivative of the function will be

`y' = d/dx [ln(tanh(x/2))]`

`y' = 1/(tanh(x/2)) * d/dx[tanh(x/2)]`

To take the derivative of hyperbolic tangent, apply the formula

  • `d/dx[tanh(u)] = sec h^2 (u) * (du)/dx`

So y' will become

`y'= 1/(tanh(x/2)) * sec h^2 (x/2) * d/dx(x/2)`

`y' = 1/(tanh(x/2)) *sec h^2(x/2) * 1/2`

`y'=(sec h^2(x/2))/(2tanh(x/2))`

To simplify it further, express it in terms of hyperbolic sine and hyperbolic cosine.

  • `sec h(u) = 1/cosh(u)`
  • `tanh(u)=sinh(u)/cosh(u)`

Applying this, y' will become

`y'= (1/(cosh^2(x/2)))/(2*sinh(x/2)/cosh(x/2))`

`y'= (1/(cosh^2(x/2)))/((2sinh(x/2))/cosh(x/2))`

`y'=1/(cosh^2(x/2)) * cosh(x/2)/(2sinh(x/2))`

`y'=1/cosh(x/2) * 1/(2sinh(x/2))`

`y'=1/(2sinh(x/2)cosh(x/2))`

Then, apply the identity

  • `sinh(2u) = 2sinh(u)cos(u)`

So y' will be

`y' = 1/sinh(2*x/2)`

`y'=1/sinh(x)`

 

Therefore, the derivative of the given function is `y'=1/sinh(x)` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team