`y = ln|csc(x)|` Find the derivative of the function.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`y=ln|csc(x)|`

To take the derivative of this, use the formula:

`(ln u)' = 1/u*u'`

Applying that, y' will be:

`y'=1/(cscx)*(cscx)'`

Take note that the derivative of cosecant is `(csctheta)' = -cscthetacottheta` .

`y'=1/cscx*(-cscxcotx)`

`y'=-cotx`

Therefore, the derivative of the given function is `y'=-cotx` .

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

`y=ln|csc(x)|`

To take the derivative of this, use the formula:

`(ln u)' = 1/u*u'`

Applying that, y' will be:

`y'=1/(cscx)*(cscx)'`

Take note that the derivative of cosecant is `(csctheta)' = -cscthetacottheta` .

`y'=1/cscx*(-cscxcotx)`

`y'=-cotx`

 

Therefore, the derivative of the given function is `y'=-cotx` .

Approved by eNotes Editorial Team