`y = (e^u - e^-u)/(e^u + e^-u)` Find the derivative of the function.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Using the quotient rule of derivatives:

`y' = [d/(du) (e^u-e^(-u)) * (e^u+e^(-u)) - (e^u-e^(-u)) d/(du) (e^u +e^(-u))]/(e^u+e^(-u))^2`

` ` `= [(e^u -e^(-u) *(-1))*(e^u+e^(-u)) - (e^u-e^(-u))*(e^u+e^(-u) *(-1))]/(e^u+e^(-u))^2`

`=[(e^u + e^(-u))*(e^u+e^(-u))- (e^u-e^(-u))*(e^u-e^(-u))]/(e^u+e^(-u))^2`

`= [(e^u+e^(-u))^2-(e^u-e^(-u))^2] /(e^u+e^(-u))^2`

`= [(e^u +e^(-u)+e^u-e^(-u)) *(e^u+e^(-u)-e^u+e^(-u))]/(e^u+e^(-u))^2`

`= (4e^ue^(-u))/(e^u+e^(-u))^2 `

`= 4/(e^u+e^(-u))^2`

Hope this helps.

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial