`y = e^(alpha x) sin(beta x)` Find y' and y''

Textbook Question

Chapter 3, 3.4 - Problem 49 - Calculus: Early Transcendentals (7th Edition, James Stewart).
See all solutions for this textbook.

1 Answer | Add Yours

gsenviro's profile pic

gsenviro | College Teacher | (Level 1) Educator Emeritus

Posted on

Using the product rule:

d/dx f(x)g(x) = f'(x)g(x) + f(x)g'(x)

`y'= d/dx [e^(alpha x) sin (beta x)]`

`= e^(alpha x) * alpha * sin(beta x) + e^(alpha x) * cos(beta x)* beta`

`= e^(alpha x) *[alpha sin(beta x) + beta * cos (beta x)]`

`y'' = d/dx (e^(alpha x)) * [alpha sin (beta x) + beta cos (beta x)] `

`+ e^(alpha x) d/dx [alpha sin(betax) + beta cos(betax)]`

`= alpha e^(alphax) * [alpha sin(beta x)+ beta cos(betax)] `

`+e^(alpha x)*[alpha*beta cos(beta x)-beta^2 sin(betax)]`

`= e^(alpha x) *[(alpha^2-beta^2)sin(betax) + 2alphabeta cos(betax)]`

hope this helps.

We’ve answered 318,922 questions. We can answer yours, too.

Ask a question