`y'+3x^2y=x^2y^3`
Multiply the above equation by `y^(-3)`
`y^(-3)dy/dx+3x^2y(y^(-3))=x^2`
`y^-3dy/dx+3x^2y^(-2)=x^2`
Taking the transformation `v=y^(-2)`
`(dv)/dx=d/dy(y^(-2))*dy/dx`
`(dv)/dx=-2y^(-3)dy/dx`
`-1/2(dv)/dx=y^(-3)dy/dx`
Now the Bernoulli equation is transformed as ,
`-1/2(dv)/dx+3x^2v=x^2`
`(dv)/dx-6x^2v=-2x^2`
Now the above is a linear equation in the dependent variable v and independent variable y.
The integrating factor is n(x)=`e^(int(-6x^2dx))`
`=e^(-6x^3/3)`
`=e^(-2x^3)`
Then,
`e^(-2x^3)*(dv)/dx-6e^(-2x^3)*x^2v=-2e^(-2x^3)*x^2`
`d/dx(e^(-2x^3)*v)=e^(-2x^3)(dv)/dx+ve^(-2x^3)(-6x^2)`
`=e^(-2x^3)(dv)/dx-6e^(-2x^3)*x^2v`
`=-2e^(-2x^3)*x^2`
`intd/dx(e^(-2x^3)*v)dx=int-2e^(-2x^3)x^2dx`
`e^(-2x^3)*v=-2inte^(-2x^3)*x^2dx`
Let `t=x^3`
`dt=3x^2dx`
`e^(-2x^3)*v=-2inte^(-2t)*dt/3`
`=-2/3(e^(-2t)/(-2))+C`
`=e^(-2t)/3+C`
Substitute back `t=x^3`
`e^(-2x^3)*v=1/3e^(-2x^3)+C`
Substitute back `v=y^(-2)`
`e^(-2x^3)*y^(-2)=1/3e^(-2x^3)+C`
`y^-2=1/3+C/e^(-2x^3)`
`1/y^2=1/3+Ce^(2x^3)`
`y^2 = 1 / (1/3+Ce^(2x^3))`
`y = +-sqrt(3)/(Ce^(2x^3) + 1)`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.