`y = 3x^(2/3)` Find the limit, if possible

Textbook Question

Chapter 3, 3.9 - Problem 12 - Calculus of a Single Variable (10th Edition, Ron Larson).
See all solutions for this textbook.

2 Answers | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You need to evaluate the limit, hence, you need to replace `oo` for x in equation:

`lim_(x->oo) 3x^(2/3) = 3*root(3)(oo^2) = oo`

Hence, evaluating the given limit, for `x->oo` , yields `lim_(x->oo) 3x^(2/3) = oo` .

If you put `x->-oo` , yields:

`lim_(x->-oo) 3x^(2/3) = 3*root(3)((-oo)^2) = oo`

Hence, evaluating the given limit, for `x->-oo` , yields `lim_(x->-oo)3x^(2/3)=oo`

We’ve answered 318,915 questions. We can answer yours, too.

Ask a question