`y = 3x^(2/3)` Find the limit, if possible

Expert Answers
sciencesolve eNotes educator| Certified Educator

You need to evaluate the limit, hence, you need to replace `oo` for x in equation:

`lim_(x->oo) 3x^(2/3) = 3*root(3)(oo^2) = oo`

Hence, evaluating the given limit, for `x->oo` , yields `lim_(x->oo) 3x^(2/3) = oo` .

If you put `x->-oo` , yields:

`lim_(x->-oo) 3x^(2/3) = 3*root(3)((-oo)^2) = oo`

Hence, evaluating the given limit, for `x->-oo` , yields `lim_(x->-oo)3x^(2/3)=oo`

loves2learn | Student

`lim_(x->oo)(3(x)^(2/3))`

Plug in the `oo`

`=3(oo)^(2/3)`

`=3(oo)`

`=oo`