`(y-1)sinx dx - dy = 0` Solve the first-order differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`(y-1)sin(x)dx - dy = 0`

To solve, express the equation in the form `N(y)dy = M(x)dx`.

So bringing same variables on one side, the equation becomes:

`(y-1) sin(x) dx = dy`

`sin(x) dx = dy/(y - 1)`

Then, take the integral of both sides.

`int sin(x) dx = int dy/(y-1)`

For the left side, apply the formula `int sin (u) du = -cos(u) + C` .

And for the right side, apply the formula `int (du)/u =ln|u| + C` .

`-cos(x) +C_1 = ln|y-1|+C_2`

From here, isolate the y.

`-cos(x) + C_1 - C_2 = ln|y-1|`

Since C1 and C2 represent any number, express it as a single constant C.

`-cos(x) +C = ln|y-1|`

Then, eliminate the logarithm in the equation.

`e^(-cos(x)+C) = e^(ln|y-1|)`

`e^(-cos(x) + C) = |y-1|`

`+-e^(-cos(x) + C) = y-1`

To simplify the left side, apply the exponent rule `a^m*a^n=a^(m+n)` .

`+-e^(-cos(x))*e^C= y-1`

`+-e^C*e^(-cos(x))=y-1`

Since `+-e^C` is a constant, it can be replaced with C.

`Ce^(-cos(x))=y - 1`

`Ce^(-cos(x))+1=y`

Therefore, the general solution is  `y=Ce^(-cos(x))+1` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial