`-x + y - z = -14, 2x - y + z = 21, 3x + 2y + z = 19` Use matricies to solve the system of equations (if possible). Use Gauss-Jordan elimination.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The augmented matrix is            

`[[-1,1,-1,-14], [2,-1,1,21],[3,2,1,19]] `

On applying `R_1 -gt R_1 +R_2` we get (means changing 1st row as the sum of  of first and second row)

 

`[[1,0,0,7],[2,-1,1,21],[3,2,1,19]] `

On applying `R_2 -gt R_2 - 2R_1` we get

 

`[[1,0,0,7], [0,-1,1,7], [3,2,1,19]] `

On applying `R_2 -gt -R_2` and `R_3 -gt R_3 - 3R_1` we get

 

`[[1,0,0,7],[0,1,-1,-7],[0,2,1,-2]] `

On applying `R_3 -gt R_3 - 2R_2` we get 

 

`[[1,0,0,7],[0,1,-1,7],[0,0,3,12]] `

On applying `R_3 -gt(R_3)/3` we get

 

`[[1,0,0,7],[0,1,-1,-7],[0,0,1,4]] `

Hence the given system of equations is equivalent to the following system of equations

 

`x = 7 `

`y - z = -7 ` and 

 

`z = 4 `

`therefore` the solution set is

`x = 7, y =-3, z = 4 `

                                                      

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team