Solve the simultaneous equations x+y=a+b;`a/x+b/y=2` :
From the first equation let y=a+b-x
Multiply the second equation on both sides by xy to get:
ay+bx=2xy
Substituting for y:
a(a+b-x)+bx=2x(a+b-x)
`a^2+ab-ax+bx=2ax+2bx-2x^2`
`2x^2-(3a+b)x+(a^2+ab)=0` Use the quadratic equation:
`x=( (3a+b) +- sqrt((3a+b)^2-4(2)(a^2+ab)))/(2(2))`
`=((3a+b)+-sqrt(a^2-2ab+b^2))/4`
`=> x=(3a+b+a-b)/4==>x=(4a)/4=a` Then y=b
`=>x=(3a+b-(a-b))/4 ==>x=(a+b)/2` Then `y=(a+b)/2`
---------------------------------------------------------
The solutions are `(a,b);((a+b)/2 , (a+b)/2 )`
--------------------------------------------------------