Draw a table for different values of t and plot the corresponding points (x,y) obtained from the table.Connect the points to a smooth curve. ( Refer the attached image).
The direction in which the graph of a pair of parametric equation is traced as the parameter increases is called the orientation imposed on the curve by the equation.
Now let's eliminate the parameter t , to write the corresponding rectangular equation,
Given parametric equations are :
`x=root(4)(t)` ----------------- (1)
`y=8-t` ---------------- (2)
From equation 1,
`t=x^4`
Substitute t in the equation 2,
`y=8-x^4` , is the rectangular equation of the given parametric equations.