We have to solve for x given that x^log2 x + 8*x^-log2 x = 6
x^log(2) x + 8*x^(- log(2) x) = 6
=> x^log(2) x + 8/x^(log(2) x) = 6
Let x^log(2) x = y
=> y + 8/y = 6
=> y^2 - 6x + 8 = 0
=> y^2 - 4y - 2y + 8 = 0
=> y(y - 4) - 2(y - 4) =0
=> ( y - 2)(y - 4) =0
We get y = 2 and y = 4
x^log(2) x = 2
=> log(2) x * log(2) x = 1
=> [log(2) x]^2 = 1
=> log(2) x = 1 and log(2) x = -1
=> x = 2 and x = 1/2
x^log(2) x = 4
=> [log (2) x]^2 = 2
=> log (2) x = sqrt 2 and - sqrt 2
=> x = 2^ sqrt 2 and 2^(- sqrt 2)
The values of x are 2 , (1/2) , 2^ sqrt 2 and 2^(-sqrt 2)
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.