`x^4 (x + y) = y^2 (3x - y)` Find `(dy/dx)` by implicit differentiation.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Note:- 1) If y = x^n ; then dy/dx = n*x^(n-1) ; where 'n' = real number 

2) If y = u*v ; where both u & v are functions of 'x' ; then

dy/dx = u*(dv/dx) + v*(du/dx)

Now, the given function is:-

(x^4)*(x + y) = (y^2)*(3x - y)

Differentiating both sides w.r.t 'x' we get

{4*(x^3)}*(x+y) + (x^4)*[1 + (dy/dx)] = {2y*(dy/dx)}*(3x-y) + (y^2)*{3 - (dy/dx)} 

or, 4*(x^4) + 4y*(x^3) + (x^4) + (x^4)*(dy/dx) = 6xy*"(dy/dx) - 2(y^2)*(dy/dx) + 3*(y^2) - (y^2)*(dy/dx)

or, [5*(x^4) + 4y*(x^3) - 3*(y^2)] = (dy/dx)*[6xy - 3(y^2) - (x^4)]

or, dy/dx = [5*(x^4) + 4y*(x^3) - 3*(y^2)]/[6xy - 3(y^2) - (x^4)]

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial