If x^2+ kx - 6 = (x - 2)(x + 3), then k = ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We are given that x^2+ kx - 6 = (x - 2)(x + 3)

Now x^2+ kx - 6 = (x - 2)(x + 3)

=> x^2 + kx - 6 = x^2 -2x + 3x - 6

=> x^2 + kx - 6 = x^2 + x - 6

canceling the common terms

=> kx = x

=> k = 1

Therefore k = 1

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

Given that x^2 + kx - 6 = (x-2)(x+3)

We need to find k.

First we will need to open the brackets on the left side and then compare the terms.

==> x^2 + kx -6 = x^2 -2x + 3x - 6

==> x^2 + kx -6 = x^2 + x -6

Now we will add 6 to both sides.

==> x^2 + kx = x^2 + x

Now we will subtract x^2

==> kx = x

Now we will subtract x from both sides.

==> kx -x = 0

Now we will factor x.

==> x (k-1) = 0

x can not be zero.

Then k-1 = 0  ==> k= 1

Then the value of k is 1.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team