A woman made 35,000 during her first year as a dog trainer. Each year she has recieved a 10% raise. Find the total earnings if this is her 8th year. (Use geometric sequence/Partial sum formula if you can)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The initial value a of the sequence is 35,000, the ratio is 1.1 since every year she receives the amount of the previous year plus 10%. The number of terms m is 8.




The sum of the first m members is equal to `(a(1-r^m))/(1-r)`

Substitute 35,000 for a 1.1 for r and 8 for m to determine the total earnings for the first 8 years.




Thus she earned $400,255 after 8 years.

` ` To verify, write each term of the sequence and add them together:

n=1, 35,000

n=2, 35,000*1.1=38,500

n=3, 38,500*1.1=42,350

n=4, 42,350*1.1=46,585

n=5, 46,585*1.1=51,243.50

n=6, 51,243.50*1.1=56,367

n=7, 56,367*1.1=62,004.6

n=8, 62,004.6*1.1=68,205

The sum of all of them is 400,255

Approved by eNotes Editorial Team