Why does the time period of the pendulum increase when its length is increased?
- print Print
- list Cite
Expert Answers
calendarEducator since 2009
write387 answers
starTop subjects are Science and Math
Perhaps the easiest way to understand this is to look at the arm of the pendulum as the radius of a circle. As the pendulum swings back and forth in its periodic motion it is moving through a fixed portion of the circumference of the circle. If you keep the angle of the pendulum's motion the same but increase the length of the pendulum you will also increase the length of the arc...
(The entire section contains 2 answers and 211 words.)
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Related Questions
- How does the resistance increase when the length of the conductor increases? Why does it decrease...
- 1 Educator Answer
- What will happen to the period of a pendulum if you increase its mass?
- 1 Educator Answer
- How is the period of a pendulum dependent on the length and mass of the pendulum?
- 1 Educator Answer
- A simple pendulum is hollow from within and its time period is T. How is the time period of this...
- 1 Educator Answer
- The acceleration due to gravity on the moon is 1.62 m/s2.What is the length of a pendulum whose...
- 1 Educator Answer
calendarEducator since 2007
write1,492 answers
starTop subjects are History, Science, and Literature
I am not an expert at physics but to put it in simple terms:
By increasing the length of pendulum, it increases the length of the arc movement by the pendulum. (arc length is given by angle/360 multiplied by 2(pi) and r; in this case r is your length of pendulum) Since g is constant, velocity is constant. Time duration for 1 oscillation hence increases.
@user922554, to reply your comment (with reference to the 1st answer), there is no difference in potential or kinetic energy, just the difference in the distance the pendulum bob travelled. Perhaps I can only guess that you are talking about how energy is transferred as time passes, so, as the bob is swinging, a bob with a longer pendulum length will have a lower rate of energy transfer, but there should not be a difference in maximum kinetic energy reached. (This is all very confusing without drawing actual setups)
Consider 2 setups, where the only difference in the setups is the length of the pendulum, the height above ground when the bob is released is kept constant, starting swing from right to left. Assuming no loss in heat or sound.
To make it simple,
Results 1st setup: when t=0, original height(right side), t=1, lowest height, t=2, same height as t=0, t=3 lowest height, t=4 back to original height.
Results 2nd setup: t=0, original, t=2 lowest, t=4 same as t=0, t=6 lowest, t=8 back to original.
(Lets ignore the fact that I am using hypothetical experiment to explain this), at t=1, for the 1st setup, the bob has maximum velocity as it reaches the lowest height from original height. For the 2nd setup, the bob has converted half of the maximum energy possible, ke = 1/2 mv^2, so v will vary accordingly. (However do note that maximum velocity--> t=1 for 1st setup, and t=2 for 2nd setup reached should be the same [unless I visualised wrongly])
So, increasing the length of the pendulum, increases the arc length, of which energy transfer from gpe to ke is slower. On average, the speed of different setups should be the same, just given the different arc lengths, the arc movement varies, hence if arc length increases, time taken for 1 swing increases.
Rate of energy transfer do not directly affect time period of a pendulum, energy transfer do affect the velocity of the pendulum, but *average* speed, is the same or around the same, hence a longer travelling distance will have a longer period.
The period of a simple pendulum is:2(pi)*sqrt(L/g).
So T is proportional to length.
So pendulums of same period make eaqual angle.
shorter pendulums must swing faster to travel the arc of the angle in the given period,While Big L pendulums have to travel long length(period) to mark the same arc of the angle.(logical)
Student Answers