When an object is dropped from a height of 620 m, what is the time taken for it to reach the ground.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The distance traveled by an object (d) moving with an initial speed (u) and which is accelerating at a rate a is t where d = u*t + (1/2)*a*t^2.

In the problem, the object has been dropped from a height of 620 m, the initial speed of the object in this case is 0 m/s. The gravitational force of attraction accelerates the object downwards at 9.8 m/s^2. The distance traveled by the object before it strikes the ground is 620 m.

Substituting d = 620, a = 9.8, u = 0 gives the equation:

`620 = 0*t + (1/2)*9.8*t^2`

=> `620 = (1/2)*9.8*t^2`

=> `t^2 = 6200/49`

=> `t ~~ 11.24`

When dropped from a height of 620 m, the object strikes the ground after 11.24 seconds.

Approved by eNotes Editorial Team
Illustration of a paper plane soaring out of a book

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial