We have to find x and y given that (8x + yi) / (1 + 4i) = (2x + i)/ (3 + 2i)

(8x + yi) / (1 + 4i) = (2x + i)/ (3 + 2i)

=> (8x + yi) (3 + 2i) = (2x +i) (1+ 4i)

=> 24x + 16xi + 3yi + 2yi^2 = 2x + i + 8xi + 4i^2

=> 24x + 16xi + 3yi – 2y = 2x + i + 8xi – 4

=> 24x – 2y + i (16x + 3y) = 2x – 4 + i (8x +1)

Equate the real and complex coefficients

We get 24x – 2y = 2x – 4

22x – 2y = -4

=> 11x – y = -2

=> y = 11x + 2

and 16x + 3y = 8x + 1

=> 8x + 3y – 1 = 0

substitute y = 11x + 2

=> 8x + 33x + 6 – 1 = 0

=> 41x = -5

=> x = -5/41

y = 11*(-5/41) + 2

=> (-55 + 82)/41

=> 27 / 41

Therefore **x = -5/41** and **y = 27/41**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now