trigonometry1

Start Free Trial

What is x if cos^2(x/2)-2cos^2x=(3/2)*square root2(1+cosx)+2sin^2x?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to solve cos^2(x/2)-2cos^2x=(3/2)*square root2(1+cosx)+2sin^2x for x.

Rewriting the equation in a simpler form:

(cos x/2)^2 - 2 ( cos x)^2 = (3/2)sqrt 2 ( 1 + cos x) + 2 (sin x)^2

we know that (cos x)^2 + (sin x)^2 = 1

=> (cos x/2)^2 = (3/2)(sqrt 2)(1 + cos x) + 2

=> (cos x/2)^2 = (3/sqrt 2)(1 + 2(cos x/2)^2 - 1) + 2

=> (cos x/2)^2 = 3*sqrt 2(cos x/2)^2 + 2

=> (cos x/2)^2 - 3*sqrt 2(cos x/2)^2 = 2

=> (cos x/2)^2 (1 - 3*sqrt 2) = 2

=> (cos x/2)^2 = 2/(1 - 3*sqrt 2)

=> cos x/2 = sqrt (2/(1 - 3*sqrt 2))

=> x/2 = arc cos ( sqrt (2/(1 - 3*sqrt 2)))

Therefore x = 2*arc cos ( sqrt (2/(1 - 3*sqrt 2))) + 2*n*pi

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team