Describe in simple terms the method of Proof by Induction

1 Answer | Add Yours

mathsworkmusic's profile pic

mathsworkmusic | (Level 2) Educator

Posted on

Proof by Induction:

Suppose `n` is a number in the set of all natural numbers `NN = {1,2,3,...}`. To prove, using the method of induction, that a mathematical relation or formula is true for all `n` we first demonstrate that it is true for `n=1`. We then demonstrate that if it is true for any `n` this implies it is true for `n+1` (the next term in the series). This is the inductive step. Then, the relation must be true for all `n` because by the inductive step we have demonstrated that as well as it being true for `n=1` it is also true for `n=2` and hence for `n=3` and so on. This is a great saving on showing the result is true for each and every `n`, which in any case wouldn't be possible because `n`can be infinite.

We’ve answered 319,827 questions. We can answer yours, too.

Ask a question