We have f(x) = x^5+x^4+1 and g(x) = (x- 1)^3 = x^3 - 3x^2 + 3x - 1.
We can find the remainder by dividing them.
x^3 - 3x^2 + 3x - 1 | x^5+x^4+1 |x^2 + 4x + 9
................................x^5 - 3x^4 + 3x^3 - x^2
-----------------------------------------------------------
.................................0 + 4x^4 - 3x^3 + x^2 +1
.......................................4x^2 - 12x^3 + 12x^2 - 4x
----------------------------------------------------------------
......................................0 + 9x^3 - 11x^2 + 4x + 1
............................................9x^3 - 27x^2 + 27x - 9
---------------------------------------------------------------
.............................................0 + 16x^2 - 23x + 10
Therefore the remainder is 16x^2 - 23x +10.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.