What are the real solutions of the equation log(x+2) x + logx (x+2)=5/2 ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to find the real solutions of log(x+2) x + log(x) (x+2) = 5/2.

We use the relation log (a) b = 1/log (b) a and log a + log b = log a*b

log(x+2) x + log(x) (x+2) = 5/2

=> 1/ log (x) (x+2) + log(x) (x+2) = 5/2

let log(x) (x + 2) = y

=> 1/y + y = 5/2

=> 1 + y^2 = 5y/2

=> 2 + 2y^2 = 5y

=> 2y^2 - 5y + 2 = 0

=> 2y^2 - 4y - y + 2 = 0

=> 2y( y - 2) - 1(y - 2) = 0

=> (2y - 1)( y - 2) = 0

=> y = 1/2 and y = 2

log(x) (x + 2) = 2

=> x + 2 = x^2

=> x^2 - x - 2 = 0

=> x^2 - 2x + x - 2 =  0

=> x(x - 2)+ 1(x - 2) = 0

=> (x + 1)(x - 2) = 0

=> x = -1 and x = 2

We cannot have x = -1 as log of a negative number is not defined.

log(x) (x + 2) = 1/2 yields complex values of x which are not defined.

The value is x = 2

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team