What is the range and domain of `f(x) = (3x^2)/(sqrt(x+1)*(x-1))`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For a function f(x), the domain is the set of values that x can take on for which f(x) is defined and real. The range is all the values of f(x) for x lying in the domain.

The function of which the range and domain has to be determined is:

`f(x) = (3x^2)/(sqrt(x+1)*(x-1))`

For f(x) to be real and defined, `x + 1 > 0` as the square root of a negative number is complex and the denominator cannot be equal to 0. Also, `x - 1 ! = 0`

`x + 1 > 0`

=> `x > -1`

`x - 1!=0`

=> `x != 1`

This gives the set of values that x can lie in as `(-1, oo)-{1}`

For -1< x < 1, f(x) is negative and for x > 1, f(x) is positive. The range of the function is the set of real numbers R.

The function `f(x) = (3x^2)/(sqrt(x+1)*(x-1))` has a domain `(-1, oo)-{1}` and the range is R

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial