What is the radius of a circle of the function x^2+y^2+2x-6y=10  at the center (-1,3).

3 Answers | Add Yours

giorgiana1976's profile pic

giorgiana1976 | College Teacher | (Level 3) Valedictorian

Posted on

The equation of the circle which has the center in the point C (-1,3), is written as following:

[x-(-1)]^2 + (y-3)^2 = R^2, where R is the radius of the circle.

We'll develop the binomials and we'll have:

x^2+2x+1+y^2-6y+9-R^2=0

The expression given in enunciation is:

x^2+y^2+2x-6y-10=0

The 2 expressions have to describe the same equation of a circle, so they have to be identically:

x^2+2x+1+y^2-6y+9-R^2=x^2+y^2+2x-6y-10

After reducing similar terms, we'll get:

10-R^2=-10

R^2=20

R=sqrt20

R=2sqrt5

neela's profile pic

neela | High School Teacher | (Level 3) Valedictorian

Posted on

Writing the given equation x^2+y^2+2x-6y =10 like :-

(x-h)^2+(y-k)^2 = r^2, which is the equation of a circle with  centre (h,k) and radius r , we get the centre and radius.

Now let us try to rewrite the equation x^2+2x +y^2-6y = 10.

To make x^2+2x a square  we add 1^2 and subtract -1^2. Similarly to make y^2-6y a  square, we add 3^2 and then subtract 3^2. So,the given equation becomes:

(x^2+2x+1^2)-1^2 + (y^2-6y+3^2) -3^2 = 10. Or

(x+1)^2 +(y-3)^2 = 10+1^2+3^2 . Or

(x- -1)^2 +(y-3)^2 = 20 = (sqrt20)^2. Identifying this equation with (x-h)^2+(y-k)^2 = r^2, we get:

Therefore (h, k) = (-1, 3) is the centre of the circle and r = sqrt20 = 2sqrt5 = 4.472136 approximately.

 

krishna-agrawala's profile pic

krishna-agrawala | College Teacher | (Level 3) Valedictorian

Posted on

In a circle with the equation of the form:

x^2 + y^2 - 2ax - 2by + c = 0

The center of the circle is given by (a, b).

and radius of the circle is given by:

Radius = (c - a^2 - b^2)^(1/2)

The given equation is:

x^2 + y^2 + 2x - 6y + 10 = 0

Therefore:

a = -1, b = 3, and c = 10

This center of the circle is (-1, 3).

As we can see this is same as the center given in the question.

Radius = (c - a^2 - b^2)^(1/2)

= [10 + (-1)^2 + 3^2]^1/2

= (10 + 1 + 9)^1/2 = 20^1/2 = 4.4721

Please note that we could have calculated the length of the radius even if the center of the circle was not given.

We’ve answered 318,963 questions. We can answer yours, too.

Ask a question