What ordered pairs represent the roots of the function f(x)= 2x^2 + 3x -20 Please explain
- print Print
- list Cite
Expert Answers
hala718
| Certified Educator
calendarEducator since 2008
write3,662 answers
starTop subjects are Math, Science, and Social Sciences
Given f(x) = 2x^2 + 3x - 20
We need to find the roots of f(x).
Then, we need to find x and f(x) values such that f(x) = 0
==> 2x^2 + 3x -20 = 0
We will use the roots formula :
==> x1= = (-3 + sqrt(9-4*2*-20) / 2*2 = (-3+sqrt9+160)/ 4 = (-3+13)/4 = 10/4 = 5/2 = 2.5
==> x2= (-3-13)/4 = -16/4 = -4
Then the roots are: (-4, 0) and ( 2.5, 0).
check Approved by eNotes Editorial
Related Questions
- Given f(x) and g(x), please find (fog)(X) and (gof)(x) f(x) = 2x g(x) = x+3
- 1 Educator Answer
- If F(X)=2x+1/x+2 then what is the inverse function. please explain how
- 1 Educator Answer
- What are the x-intercepts of y = 2x^2 - 3x – 20
- 1 Educator Answer
- the ordered pair 1,5 belongs to a function f, explain why the ordered pair 2,1 can't belong to f^-1
- 1 Educator Answer
- Evaluate the difference quotient for the given function. Simplify your answer. f(x) = 4 + 3x -...
- 1 Educator Answer
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.