What is the minimum value of 4x^2-8x-18 ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To find the minimum value of y = 4x^2 - 8x -18, we need to find the first derivative and equate it to 0. We solve for x and determine the value of the function for the value of x that we find.

y = 4x^2 - 8x - 18

y' = 8x - 8

8x - 8 = 0

=> x = 8/8

=> x = 1

Also y'' = 8 which is always positive , therefore at x = 1, we have the minimum value.

y at x = 1,

=> 4*1^2 - 8*1 - 18

=> 4 - 8 - 18

=> -22

The minimum value of 4x^2 - 8x -18 is -22.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team