What is the integral of sqrt(1+4x^2) ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Find `int sqrt(1+4x^2)dx` :

(1) Let `x=(tanu)/2` . Then `dx=1/2 sec^2udu` and `u=tan^(-1)(2x)`

Now substituting for x we get:

`int sqrt(1+4x^2)dx=int sqrt(1+tan^2u)1/2sec^2u du=1/2int sec^3udu`

(2) To evaluate `1/2 int sec^3u du` we use integration by parts:

`int u dv=uv-int v du`

Let `u=secx` , then `du=secxtanxdx`

Let `v=tanx` , then `dv=sec^2xdx`

Thus `int sec^3udu=secutanu-int secutan^2udu`

                         `=secutanu-int secu(sec^2u-1)du`

                         `=secutanu-intsec^3udu+int secudu`

`2intsec^3udu=secutanu+int secudu`

`int sec^3udu=1/2[secutanu+ln|secu+tanu|+C`

(3) Now `1/2 int sec^3udu=1/4[secutanu+ln|secu+tanu|]+C`

Substituting back for x we get:

` `** Note that `secutanu=sqrt(tan^2u+1)tanu` and `tanu=2x` **

`1/4[secutanu+ln|secu+tanu|]+C`

`=1/4[2xsqrt(4x^2+1)+ln|sqrt(4x^2+1)+2x|]+C`

** Note that `sinh^(-1)(2x)=ln(2x+sqrt(4x^2+1))` **

`=1/2xsqrt(4x^2+1)+1/4 sinh^(-1)(2x)+C`

(4) Thus the solution is:

`int sqrt(1+4x^2)dx=1/2xsqrt(4x^2+1)+1/4sinh^(-1)(2x)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team