Find `int sqrt(1+4x^2)dx` :
(1) Let `x=(tanu)/2` . Then `dx=1/2 sec^2udu` and `u=tan^(-1)(2x)`
Now substituting for x we get:
`int sqrt(1+4x^2)dx=int sqrt(1+tan^2u)1/2sec^2u du=1/2int sec^3udu`
(2) To evaluate `1/2 int sec^3u du` we use integration by parts:
`int u dv=uv-int v du`
Let `u=secx` , then `du=secxtanxdx`
Let `v=tanx` , then `dv=sec^2xdx`
Thus `int sec^3udu=secutanu-int secutan^2udu`
`=secutanu-int secu(sec^2u-1)du`
`=secutanu-intsec^3udu+int secudu`
`2intsec^3udu=secutanu+int secudu`
`int sec^3udu=1/2[secutanu+ln|secu+tanu|+C`
(3) Now `1/2 int sec^3udu=1/4[secutanu+ln|secu+tanu|]+C`
Substituting back for x we get:
` `** Note that `secutanu=sqrt(tan^2u+1)tanu` and `tanu=2x` **
`1/4[secutanu+ln|secu+tanu|]+C`
`=1/4[2xsqrt(4x^2+1)+ln|sqrt(4x^2+1)+2x|]+C`
** Note that `sinh^(-1)(2x)=ln(2x+sqrt(4x^2+1))` **
`=1/2xsqrt(4x^2+1)+1/4 sinh^(-1)(2x)+C`
(4) Thus the solution is:
`int sqrt(1+4x^2)dx=1/2xsqrt(4x^2+1)+1/4sinh^(-1)(2x)+C`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.