# What is the integral `int x^2*e^(x^3) dx`

*print*Print*list*Cite

### 1 Answer

The integral `int x^2*e^(x^3) dx` has to be determined.

Substitute `x^3 = y`

`dy/dx = 3*x^2`

`=> (dy)/3 = x^2*dx`

Substituting this in the original integral gives:

`int x^2*e^(x^3) dx`

`= int e^y/3 dy`

`= e^y/3`

Writing y in terms of x gives:

`(e^(x^3))/3`

**The integral `int x^2*e^(x^3) dx = (e^(x^3))/3` **