The integral `int dx/(5 - 3x)` has to be determined.

This can be done using substitution.

Let `y= 5 - 3x`

Differentiating both the sides with respect to x gives:

`dy/dx = -3`

`=> dx = -(dy)/3`

Substituting for 5 - 3x and dx in the original integral gives:

`int dx/(5 - 3x)`

= `-(1/3) int dy/y`

= `-(1/3)*ln y`

As y = 5 - 3x, the integral is:

`-(1/3)*ln (5 - 3x)`

**The integral `int dx/(5 - 3x) = -(1/3)*ln (5 - 3x)` **

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now