What is the integral of f(x) = 6x / (3x^2 + 4).  

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given f(x)= 6x/ (3x^2 + 4)

We need to find the integral of f(x).

Let us assume that y= 3x^2 + 4

==> dy = 6x dx

Let us substitute:

intg f(x) = intg ( 6x/ (3x^2 + 4) dx

            = intg ( dy / y)

             = ln y + C

==> Now we will substitute with y= 3x^2 + 4

==> intg f(x) = ln ( 3x^2 + 4)  + C

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

It is given that f(x) = 6x / (3x^3 + 4)

Let t = 3x^2 + 4

dt / dx = 6x

=> dt = 6x dx

Int [6x / (3x^3 + 4) dx]

=> Int [dt / t]

=> ln t + C

replace t with 3x^2 + 4

=> ln (3x^2 + 4) + C

Therefore the integral of f(x) = 6x / (3x^2 + 4) is ln (3x^2 + 4) + C.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team