The problem provides the information that the domain of the function is the interval `[-2,1]` , hence, since the domain of the function consists of all `x` values, you need to solve the inequality `-2 <= x <= 1` but first, you need to replace `y` for `f(x)` in the equation of the given function, such that:

`y = -2x + 1`

You need to write `x` in terms of `y` , hence, you need to isolate the term that contains `x` to the left side, such that:

`2x = 1 - y => x = (1 - y)/2`

Replacing `(1 - y)/2` for `x` in the inequality you need to solve, yields:

`-2 <= (1 - y)/2 <= 1 => -2*2 <= 1 - y <= 2*1`

`-4 <= 1 - y <= 2 => -4 - 1 <= 1 - 1 - y <= 2 - 1`

`-5 <= -y <= 1`

You need to multiplicate by -1, hence, you need to change the direction of inequality, such that:

`-1 <= y <= 5`

**Hence, evaluating the image of the given function, under the given conditions, yields **`y in [-1,5].`

**Further Reading**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now