The area of a triangle is given by (1/2)*base*height.

If the length of the sides becomes double so does the height.

As base and height are becoming double the new area is 4 times the original area.

**When the length of the sides of a triangle double, the area becomes quadruple.**

Let the sides of a triangle be a,b, and c, and let the height be h.

Then We will assume that c is the base and h is the height.

Then the area is given by :

A 1= (1/2) * c * h ...........(1)

Now when the sides doubles, the sides are: 2a, 2b, 2c, and the height is 2h

==> Then the area is given by :

A2 = (1/2)* 2c * 2h = 4*(1/2)*c * h

But (1/2)*c*h= A1

==> A2 = 4* A1

**Then the area of the triangle is increased by a factor of 4 if the sides are doubled.**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now