Let the first term of the arithmetic sequence be a and the common difference be d.
(a + a + 12d)*(13/2) = 130
=> 2a + 12d = 20
=> a + 6d = 10
=> a = 10 - 6d
a4, a10 and a7 are consecutive terms of a geometric series:
=> (a + 9d) / (a + 3d) = (a + 6d) / (a + 9d)
=> (10 - 6d + 9d) / (10 - 6d + 3d) = (10 - 6d + 6d) / (10 - 6d + 9d)
=> (10 + 3d) / (10 - 3d) = 10 / (10 + 3d)
=> 100 + 9d^2 + 60d = 100 - 30d
=> 9d^2 + 90d = 0
=> d( d + 10) = 0
=> d = 0 and d = -10
So the first term of the series = 10 - 6*d can be 10 or 70
The required value of the first terms of the AP can be 10 or 70.
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now