What is the extreme point of the curve 3x-6x^2?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to find the extreme point of the curve y = 3x - 6x^2.

To do that we find the first derivative of 3x - 6x^2 and equate it to zero. This is solved for x.

Now y = 3x - 6x^2

y' = 3 - 12x

3 -...

See
This Answer Now

Start your subscription to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your Subscription

We have to find the extreme point of the curve y = 3x - 6x^2.

To do that we find the first derivative of 3x - 6x^2 and equate it to zero. This is solved for x.

Now y = 3x - 6x^2

y' = 3 - 12x

3 - 12x = 0

=> 12x = 3

=> x = 1/4

At x = 1/4, y = 3*(1/4) - 6*(1/4)^2

=> 3/4 - 6/16

=> 3/4 -3/8

=> 3/8

Also at x = 1/4, y'' is -12 which is negative. So we have the point of maxima at x = 1/4

The extreme point is at x = 1/4 and this is the maximum point with the expression equal to 3/8.

Approved by eNotes Editorial Team