What exactly is the Mean Value Theorem and how does it apply to Rolle's Theorem? (Calculus)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

(1) The mean value theorem: Suppose f is a continuous function on an interval [a,b]. Then if `f(a) <= k <= f(b)` for some `k in RR` or `f(a)>=k>=f(b)` , then there must be at least one `c in (a,b)` such that f(c)=k.

In other words, in order to get...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

(1) The mean value theorem: Suppose f is a continuous function on an interval [a,b]. Then if `f(a) <= k <= f(b)` for some `k in RR` or `f(a)>=k>=f(b)` , then there must be at least one `c in (a,b)` such that f(c)=k.

In other words, in order to get from f(a) to f(b), the function takes on all values between the two. The function is continuous, so there are no jumps or holes. There must be at least one point c in the interval where f(c) equals the value k.

(2) Rolle's theorem is a special case of the MVT, where f(a) and f(b) have opposite sign, and k=0. In order to get from a positive to a negative, or vice versa, the function must pass through zero.

Notice how important the requirement of continuity is -- if the function is discontinuous on [a,b], the theorems will not apply.

Approved by eNotes Editorial Team