What is the equation with roots that are twice the roots of ax^2 + bx + c = 0

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Another method is to just notice that if `r` is a root of `ax^2+bx+c=0,` then `2r` is a root of `a(x/2)^2+b(x/2)+c=0,` since `a((2r)/2)^2+b((2r)/2)+c=ar^2+br+c=0` .

If we expand `a(x/2)^2+b(x/2)+c` , we get the answer `a/4x^2+b/2x+c=0.`

But this isn't the only answer; any nonzero constant multiple of this equation has the same roots, so in particular, we can get aruv's equation by multiplying by 4. `4(a/4x^2+b/2x+c)=ax^2+2bx+4c.`

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial