What is the definite integral of y=sin2x/square root(1+sin^4 x)? the upper limit of integration is pi/2 and the lower limit is 0

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to determine the definite integral of y = sin 2x /sqrt(1 + (sin x)^4), x = 0 to x = pi/2

Int [ sin 2x /sqrt(1 + (sin x)^4) dx]

let 1 + (sin x)^2 = y

dy/dx = 2*sin x* cos x = sin 2x

=> dy = sin 2x dx

Int [ sin 2x /sqrt(1 + (sin x)^4) dx]

=> Int [ 1/sqrt ( 1 + y^2) dy]

=> arcsinh(y)

substitute y = 1 + (sin x)^2

=> arcsinh(1 + (sin x)^2) + C

Between the limits x = 0 and x = pi/2, the definite integral is

arcsinh(1 + 1) - arcsinh(1)

=> arcsinh(2) - arcsinh(1)

The definite integral is arcsinh(2) - arcsinh(1)

Approved by eNotes Editorial Team
Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial