We have to find the antiderivative of y = x / sqrt ( x^2 - 9)

Let u = x^2 - 9

=> du / dx = 2x

=> x dx = du/2

Int [ x / sqrt ( x^2 - 9) dx]

=> Int [(1/2)*(1/ sqrt u) du]

=> Int [ (1/2)* u^ (-1/2) du]

=> (1/2)* u^( 1/2)/ (1/2) + C

=> u^(1/2) + C

replace u with x^2 - 9

=> sqrt (x^2 - 9) + C

**The required integral is sqrt (x^2 - 9) + C**

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now