What are all the critical points of f(x)=sinx+cosx ? 0=<x=<2pi
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,544 answers
starTop subjects are Math, Science, and Business
The critical points are determined by differentiating the function and equating the derivative to 0. It is solved to determine x.
f(x) = sin x + cos x
f'(x) = cos x - sin x = 0
=> cos x = sin x
=> tan x = 1
=> x = arc tan 1
=> x = pi/4 , 5*pi/4
At x = pi/4 , f(x) = sqrt 2
at x = 5*pi/4, f(x) = -sqrt 2
The critical points are at x = pi/4 and x = 5*pi/4, and the extreme values are (pi/4, sqrt 2) and (5*pi/4,-sqrt 2).
Related Questions
- solve the limit of the function f(x)=sin5x/sinx if x --> pi
- 1 Educator Answer
- Evaluate the limit of the function ln(1+x)/(sinx+sin3x) x-->0
- 1 Educator Answer
- What is f'(x) if f(x)=x^(sin x)?
- 1 Educator Answer
The critical points of a function are the roots of the first derivative of that function.
We'll have to determine the first derivative of the given function:
f'(x) = (sin x + cos x)'
f'(x) = cos x - sin x
We'll put f'(x) = 0.
cos x - sin x = 0
cos x = sin x
We'll divide by cos x both sides and we'll get:
sin x/cos x = 1
tan x = 1
The tangent has the positive value 1 in the 1st and 3rd quadrants.
x = pi/4 (1st quadrant)
x = pi + pi/4
x = 5pi/4 (3rd quadrant)
The extreme points of the function are:
f(pi/4) = sin pi/4 + cos pi/4 = 2sqrt2/2 = sqrt2
f(5pi/4) = sin pi/4 + cos pi/4 = -2sqrt2/2 = -sqrt2
The critical points of the function are x = pi/4 and x = 5pi/4 and the extreme points are (pi/4 ; sqrt2) and (5pi/4 ; -sqrt2).
Student Answers