Water flows from the bottom of a storage tank at a rate of r(t)=200-4t liters per min, where 0<t<50. Find the volume of water that flows out during the first 10 min.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Water flows out from the tank at a rate that is a function of time and given by the expression r(t) = 200 - 4t liters per minute.

To determine the volume of water that flows out during the first 10 minutes the function r(t) has to be integrated between...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

Water flows out from the tank at a rate that is a function of time and given by the expression r(t) = 200 - 4t liters per minute.

To determine the volume of water that flows out during the first 10 minutes the function r(t) has to be integrated between the limits 0 and 10. At any time t the rate of flow of water is 200 - 4t and the volume of water that actually flows out during an infinitesimally small duration `dt` is `(200 - 4t)*dt` as the rate at which water flows out during `dt` can be considered to be constant. Adding the volume of water that flows out during each of these instants gives the total volume of water that flows out.

`int_(0)^10 200 - 4t dt`

=> `200*t - 4t^2/2` between 10 and 0

=> `200(10 - 0) - 2(10^2 - 0^2)`

=> `2000 - 200`

=> `1800`

A volume of water equal to 1800 liters flows out during the first 10 minutes.

Approved by eNotes Editorial Team