The vertices of the quadrilateral are A(-1,5), B(7,1), C(5, -3) and D(-3, 1).
For the quadrilateral to be a rectangle the opposite sides should be parallel and the adjacent sides should be perpendicular.
The slope of the sides are:
AB: `(5 - 1)/(-1-7) = -1/2`
BC: `(1 +3)/(7-5) = 2`
CD: `(1+3)/(-3-5) = -1/2`
DA: `(5-1)/(-3+1) = 2`
Parallel lines have the same slope. This makes AB and CD, and BC and DA parallel. The product of the slope of perpendicular lines is equal to -1. As a result AB and BC, and CD and DA are perpendicular sides.
From the properties of the sides of the quadrilateral ABCD it is proved that it is a rectangle.
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.