Verify the identity: (secx - tanx) (cscx + 1) = cotx

Asked on by salopollo

1 Answer | Add Yours

embizze's profile pic

embizze | High School Teacher | (Level 2) Educator Emeritus

Posted on

Verify `(secx-tanx)(cscx+1)=cotx` :

Rewrite all terms in terms of sin and cos:

`=(1/(cosx)-(sinx)/(cosx))(1/(sinx)+1)`     combine fractions:

`=((1-sinx)/(cosx))((1+sinx)/(sinx))`          multiply fractions:

`=(1-sin^2x)/(cosxsinx)`                        use the pythagorean identity:

`=(cos^2x)/(cosxsinx)`                       cancel common factor:


`=cotx` as required.


We’ve answered 319,809 questions. We can answer yours, too.

Ask a question