Verify the following identity: `tanx(cot x + tan x) = sec^2x`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

An alternative method is to take `sec^2 x ` and replace it by `1/(cos^2 x).`

Replace `1/(cos^2 x)`  by `1+ tan^2 x`  (the basic formula of trigonometry `1+tan^2 x = 1/(cos^2 x)` ).

Use this substitution you've made in the identity to be proven.

`tan x(cot x + tan x) = 1+tan^2 x`

Opening the brackets, you'll have`tanx*cotx + tan^2x = 1+tan^ 2 x`

The cotangent function is the inverse of tangent, therefore tanx*cot x = 1.

`1+ tan^2x = 1+tan^ 2 x`

ANSWER: The last line proves the identity`tan x(cot x + tan x) = sec^2 x`

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

We have to verify that `tanx(cot x + tan x) = sec^2x`

Start with `tanx(cot x + tanx)`

=> `tan x*cot x+ tan^2x`

=> `1 + tan^2x`

=> `1 + (sin^2x)/(cos^2x)`

=> `(cos^2x + sin^2x)/(cos^2x)`

=` `> `1/(cos^2x)`

=> `sec^2x`

This proves that `tan x(cot x + tan x) = sec^2 x`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial