Verify (2*tan x)/(1 + tan^2 x) = sin 2x

3 Answers | Add Yours

justaguide's profile pic

justaguide | College Teacher | (Level 2) Distinguished Educator

Posted on

The relation `(2*tan x)/(1 + tan^2 x) = sin 2x` has to be verified.

`(2*tan x)/(1 + tan^2 x)`

=> `((2*sin x)/cos x)/(1 + (sin^2x)/cos^2x)`

=> `((2*sin x)/cos x)/((cos^2x + sin^2x)/(cos^2x))`

=> `(2*sin x*cos^2 x)/(cos x*(cos^2x + sin^2x))`

=> `2*sin x*cos x`

=> `sin 2x`

This proves that `(2*tan x)/(1 + tan^2 x) = sin 2x`

lochana2500's profile pic

lochana2500 | Student, Undergraduate | (Level 1) Valedictorian

Posted on

L:H:S ≡ sin 2x

we know that, sin2θ = 2sinθ.cosθ

= 2sinx.cosx ÷ 1

= 2sinx.cosx/cos²x ÷ 1/cos²x

= 2tanx ÷ sec²x

⇒ use the identity, 1 + tan²A = sec²A

= 2tanx ÷ (1+tan²x)

= R:H:S

lochana2500's profile pic

lochana2500 | Student, Undergraduate | (Level 1) Valedictorian

Posted on

R:H:S ≡ sin 2x

we know that, sin2θ = 2sinθ.cosθ

= 2sinx.cosx ÷ 1

=(2sinx.cosx/cos²x) ÷ 1/cos²x

= 2tanx ÷ sec²x

⇒ use the identity, sec²A = 1 + tan²A

= 2tanx ÷ (1+tan²x)

= R:H:S

 

 

 

 

We’ve answered 318,994 questions. We can answer yours, too.

Ask a question