Using the method of trigonometric substitution show that the definite integral int_4^5 sqrt(x^2-16)/x^2 dx approx 0,09

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You should factor out `x^2`  to radicand such that:

`sqrt(x^2 - 16) = sqrt(x^2(1 - (4/x)^2))`

You should use the following trigonometric substitution such that:

`4/x = sint => -4/x^2 dx = cost dt => (dx)/x^2 = -(cos t)/4 dt`

`x^2 = 16/(sin^2 t)`

You need to change the variable such that:

`int_4^5 sqrt(x^2-16)/x^2 dx = int_(t_1)^(t_2) sqrt((16/(sin^2 t))(1 - sin^2 t))*(-(cos t)/4)`

You should use the fundamental formula of trigonometry such that:

`1 - sin^2 t = cos^2 t`

`int_(t_1)^(t_2) sqrt((16/(sin^2 t))(cos^2 t))*(-(cos t)/4)`  = `int_(t_1)^(t_2) -(cos^2 t)/(sin^2 t) dt`

Substituting `1 - sin^2 t`  for `cos^2 t`  yields:

`int_(t_1)^(t_2) -(1 - sin^2 t)/(sin^2 t) dt`

You need to split the integral using the property of linearity of integral such that:

`int_(t_1)^(t_2) -(1 - sin^2 t)/(sin^2 t) dt = int_(t_1)^(t_2) -1/(sin^2 t) dt + int_(t_1)^(t_2) dt`

`int_(t_1)^(t_2) -(1 - sin^2 t)/(sin^2 t) dt = (cot t + t)_(t_1)^(t_2)`

Substituting back `arcsin(4/x)`  for `t`  yields:

`int_4^5 sqrt(x^2-16)/x^2 dx = (cot(arcsin(4/x)) + arcsin(4/x))|_4^5`

`int_4^5 sqrt(x^2-16)/x^2 dx = cot(arcsin(4/5)) + arcsin(4/5) - cot(arcsin(4/4)) -arcsin(4/4) `

`int_4^5 sqrt(x^2-16)/x^2 dx = cot(arcsin(4/5)) + arcsin(4/5) - cot(pi/2) - pi/2`

`int_4^5 sqrt(x^2-16)/x^2 dx = cot(arcsin(4/5)) + arcsin(4/5) - 0 - pi/2`

`int_4^5 sqrt(x^2-16)/x^2 dx = cot(arcsin(4/5)) + arcsin(4/5) - pi/2`

Hence, evaluating the given definite integral, using trigonometric substitution yields `int_4^5 sqrt(x^2-16)/x^2 dx = cot(arcsin(4/5)) + arcsin(4/5) - pi/2.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team