Using l'Hospital theorem evaluate the limit of (x^2+11x-12)/(x-1), for x->1.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to find the value of lim x--> 1[ (x^2+11x-12)/(x-1)].

As substituting x = 0 gives us the indeterminate form 0/0, we can use l'Hopital's theorem and substitute the numerator and the denominator with their derivatives.

We get :

lim x--> 1 [2x + 11]

substitute x = 1

=> 2 + 11

=> 13

The value of lim x-->1 [(x^2+11x-12)/(x-1)] = 13.

Approved by eNotes Editorial Team
Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial