You should draw an isosceles trapezoid, whose base is of 14 inches, hence, the lateral sides measure each 4 inches.

You should evaluate the area of trapezoid such that:

`A = (1/2)h(B+b)`

You should come up with the following notation of the angle made by the height of trapezoid to lateral side: `alpha` .

You may evaluate the height using the rigth triangle whose hypotenuse is the lateral side of 4 inches, such that:

`cosalpha= h/4 => h = 4 cos alpha`

`B = 14 + 2*4 sin alpha`

`A = (1/2)*4cos alpha(14 + 14 +8 sin alpha)`

`A = (1/2)*4cos alpha(28 + 8 sin alpha)`

`A = 56cos alpha + 8sin 2alpha`

You need to optimize the area, hence, you should differentiate the function A with respect to `alpha` such that:

`A' = -56sin alpha + 16cos 2alpha`

Solving the equation A' = 0 yields:

-56sin alpha + 16cos 2alpha = 0

`-14sin alpha + 4cos 2alpha = 0`

`-7sin alpha + 2cos 2alpha = 0`

Substituting `1 - 2 sin^2 alpha` for `cos 2alpha` yields:

`-7sin alpha + 2 - 4sin^2 alpha = 0`

`4sin^2 alpha + 7sin alpha - 2 = 0`

Using quadratic formula yields:

`sin alpha_(1,2) = (-7+-sqrt(49 + 32))/8`

`sin alpha_(1,2) = (-7+-sqrt81)/8`

`sin alpha_(1,2) = (-7+-9)/8 => sin alpha_1 = 1/4; sin alpha_2=-2`

`sin alpha_2 = -2 ` is invalid

`sin alpha_1 = 1/4 => alpha = sin^(-1)(1/4) ~~ 14^o`

You may evaluate the width accross the top such that:

`B = 14 + 8 sin alpha => B = 14 + 8*(1/4) => B = 16` inches

**Hence, evaluating the length of the width that gives the greatest capacity, under the given conditions, yields B = 16 inches. **

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now